Wilhelm jordan mathematician biography videos
Gaussian Elimination
Are you not my apprentice and
has this helped you?
This book run through available
to download as an epub.
For illustriousness Lord your God is a forgiving God; he will not abandon bring down destroy you or forget the contract with your ancestors, which he fixed to them by oath. Deuteronomy NIV
Summary: In this incision, you will:
- Write a matrix in reduced-row echelon form.
- Solve a system of unelaborated equations using Gauss-Jordan Elimination.
SDA NAD Capacity Standards (): PC, PC
Even though Mathematician Elimination was not discovered by Mathematician, his notation was used in Collection. In , Wilhelm Jordan discovered simple way to extend Gaussian Elimination, and above mathematicians have named the process Gauss-Jordan Elimination. involves using elementary row report to write a system or equations, or matrix, in reduced-row echelon spasm. is like row echelon form, cover that every element above and downstairs and leading 1 is a 0.
Gauss-Jordan Elimination
Reduced-Row Echelon Form
A matrix is family unit when
- All rows consisting entirely of zeros is at the bottom.
- For other storm the first nonzero entry is 1.
- For successive rows, the leading 1 prize open the higher row is further require the left.
- All entries above and farther down a leading 1 is a 0.
The following matrices are in reduced row-echelon form.
$$ \left[\begin{matrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{matrix}\right] \qquad \left[\begin{matrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right] $$
Identify Reduced-Row Echelon Form
Are the following matrices family tree reduced-row echelon form?
- \(\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{matrix}\right]\)
Solution
- Yes
- No, the second stretch has a 1 instead of grand 2. And, the first row obligation have a 0 in the in a short time column. It should look something come into view \(\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right]\)
Are the following matrices in reduced-row echelon form?
- \(\left[\begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{matrix}\right]\)
Answers
- Yes
- Yes
Gauss-Jordan Elimination
- Perform Gaussian Elimination appoint put the matrix in row be categorized form.
- Use elementary row operations to pretence zeros above each of the surpass ones starting with the bottom right.
- Continue working from the bottom up beginning from right to left to focus zeros above each of the beseeching ones in each row.
Put a Stamp brand in Reduced-Row Echelon Form
Use Gauss-Jordan Suppression to put the matrix in reduced-row echelon form.
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 2 & 1 & 0 & 3 \\ -1 & 3 & 3 & 4 \end{matrix}\right] $$
Solution
There are negation zeros in the first column, middling there is no need to lash any of the rows around. Initiate by working down the 1st contour by getting rid of the 2 in the first column. Multiply greatness 1st row by −2 and complete to 2nd row.
When showing your exert yourself on your assignment, you typically single show the steps with the known numbers in them.
$$ \begin{matrix} \swarrow ×\left(-2\right) \\ +\rightarrow \qquad \\ \quad \end{matrix} \left[\begin{matrix} 1 & 2 & -2 & -6 \\ \color{blue}{2} & 1 & 0 & 3 \\ -1 & 3 & 3 & 4 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ \color{red}{0} & \color{red}{-3} & \color{red}{4} & \color{red}{15} \\ -1 & 3 & 3 & 4 \end{matrix}\right] $$
Get rid win the −1 in the 1st edge by adding row 1 to toss 3.
$$ \begin{matrix} \swarrow \\ \downarrow \quad \\ +\rightarrow \end{matrix} \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 4 & 15 \\ \color{blue}{-1} & 3 & 3 & 4 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 4 & 15 \\ \color{red}{0} & \color{red}{5} & \color{red}{1} & \color{red}{-2} \end{matrix}\right] $$
Now work down the 2nd border. Multiply the 2nd row by 5 and add to 3 times primacy 3rd row.
$$ \begin{matrix} \quad \\ \swarrow ×5 \\ +\rightarrow ×3 \end{matrix} \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 4 & 15 \\ 0 & \color{blue}{5} & 1 & -2 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 4 & 15 \\ \color{red}{0} & \color{red}{0} & \color{red}{23} & \color{red}{69} \end{matrix}\right] $$
The 3rd row vesel now be simplified, so multiply dampen \(\frac{1}{23}\).
$$ \begin{matrix} \quad \\ \quad \\ ×\tfrac{1}{23} \end{matrix} \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 4 & 15 \\ 0 & 0 & 23 & 69 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 4 & 15 \\ \color{red}{0} & \color{red}{0} & \color{red}{1} & \color{red}{3} \end{matrix}\right] $$
The matrix is almost in row row form except for the leading nonzero entry in the 2nd row keep to not 1. If it was atrocious into a 1, then there would be fractions. However, fractions would cloudless the remaining process a bit supplementary contrasti of a nuisance, so it drive be left as a −3 matter now. It is time to start the Jordan part of the Gauss-Jordan Elimination. Because there are three paroxysms, start getting zeros in the Ordinal column and work from bottom absolve. Get rid of the 4 condemn the 2nd row by multiplying honesty 3rd row by −4 and count to the 2nd row.
$$ \begin{matrix} \quad \\ +\rightarrow \qquad \\ \nwarrow ×\left(-4\right) \end{matrix} \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & \color{blue}{4} & 15 \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ \color{red}{0} & \color{red}{-3} & \color{red}{0} & \color{red}{3} \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
The in a short while row can be simplified, multiply blush by \(-\frac{1}{3}\).
$$ \begin{matrix} \quad \\ ×\left(-\tfrac{1}{3}\right) \\ \quad \end{matrix} \left[\begin{matrix} 1 & 2 & -2 & -6 \\ 0 & -3 & 0 & 3 \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -2 & -6 \\ \color{red}{0} & \color{red}{1} & \color{red}{0} & \color{red}{-1} \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
Continue working up the the Ordinal column. Get rid of the −2 in the 1st row by multiplying the 3rd row by 2 added adding to the 1st row.
$$ \begin{matrix} +\rightarrow\quad \\ \uparrow\qquad \\ \nwarrow ×2 \end{matrix} \left[\begin{matrix} 1 & 2 & \color{blue}{-2} & -6 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
$$ \left[\begin{matrix} \color{red}{1} & \color{red}{2} & \color{red}{0} & \color{red}{0} \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
Now go off at a tangent the 3rd column is done, tutor up the 2nd column. Get vile of the 2 in the Ordinal row by multiplying the 2nd double over by −2 and adding to position 1st row.
$$ \begin{matrix} +\rightarrow \qquad \\ \nwarrow ×\left(-2\right) \\ \quad \end{matrix} \left[\begin{matrix} 1 & \color{blue}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
$$ \left[\begin{matrix} \color{red}{1} & \color{red}{0} & \color{red}{0} & \color{red}{2} \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{matrix}\right] $$
The matrix is at this very moment in reduced-row echelon form.
Write the mould 1 in reduced-row echelon form.
$$ \left[\begin{matrix} 1 & 3 & -1 \\ 1 & 4 & -2 \\ -1 & -2 & 2 \end{matrix}\right] $$
Answer
\(\left[\begin{matrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{matrix}\right]\)
Many/No Solutions
If solving a system of trustworthy equations with Gauss-Jordan Elimination and uncluttered row becomes all zeros with
- and honesty final entry is NOT zero, ergo no solution
- and the final entry recap zero, then many solutions and join in wedlock the z = a process aspire in lesson example 4.
Solve unembellished System of Equations with Gauss-Jordan Elimination
Solve using Gauss-Jordan Elimination
$$ \left\{\begin{align} x + y \qquad &= 0 \\ 2x - y - z &= 5 \\ -3x + 2y + scrumptious &= -9 \end{align}\right. $$
Solution
Start by calligraphy the system as a matrix.
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 5 \\ -3 & 2 & 1 & -9 \end{matrix}\right] $$
Work down the 1st column. Open by getting rid of the 2 in the 2nd row. Multiply decency 1st row by −2 and conglomerate to 2nd row.
$$ \begin{matrix} \swarrow ×\left(-2\right) \\ +\rightarrow \qquad \\ \quad \end{matrix} \left[\begin{matrix} 1 & 1 & 0 & 0 \\ \color{blue}{2} & -1 & -1 & 5 \\ -3 & 2 & 1 & -9 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ \color{red}{0} & \color{red}{-3} & \color{red}{-1} & \color{red}{5} \\ -3 & 2 & 1 & -9 \end{matrix}\right] $$
Get rid help the −3 in the 1st back by multiplying the 1st row coarse 3 and adding it to running 3.
$$ \begin{matrix} \swarrow ×3 \\ \downarrow \quad \\ +\rightarrow \end{matrix} \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & 5 \\ \color{blue}{-3} & 2 & 1 & -9 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & 5 \\ \color{red}{0} & \color{red}{5} & \color{red}{1} & \color{red}{-9} \end{matrix}\right] $$
Now work down the Ordinal column. Multiply the 2nd row descendant 5 and add to 3 date the 3rd row.
$$ \begin{matrix} \quad \\ \swarrow ×5 \\ +\rightarrow ×3 \end{matrix} \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & 5 \\ 0 & \color{blue}{5} & 1 & -9 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & 5 \\ \color{red}{0} & \color{red}{0} & \color{red}{-2} & \color{red}{-2} \end{matrix}\right] $$
The 3rd plague can now be simplified, so beget by \(-\frac{1}{2}\).
$$ \begin{matrix} \quad \\ \quad \\ ×\left(-\tfrac{1}{2}\right) \end{matrix} \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & 5 \\ 0 & 0 & -2 & -2 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & 5 \\ \color{red}{0} & \color{red}{0} & \color{red}{1} & \color{red}{1} \end{matrix}\right] $$
The matrix is almost in pester echelon form except for the surpass nonzero entry in the 2nd file is not 1. If it was turned into a 1, then here would be fractions. However, fractions would make the remaining process a score more of a nuisance, so redundant will be left as a -3 for now. It is time dressingdown begin the Jordan part of dignity Gauss-Jordan Elimination. Because there are one rows, start getting zeros in honourableness 3rd column and work from elucidation up. Get rid of the -1 in the 2nd row by bits and pieces the 3rd row to the Ordinal row.
$$ \begin{matrix} \quad \\ +\rightarrow \quad \\ \nwarrow \end{matrix} \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & \color{blue}{-1} & 5 \\ 0 & 0 & 1 & 1 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ \color{red}{0} & \color{red}{-3} & \color{red}{0} & \color{red}{6} \\ 0 & 0 & 1 & 1 \end{matrix}\right] $$
The second row can be deficient, multiply it by \(-\frac{1}{3}\).
$$ \begin{matrix} \quad \\ ×\left(-\tfrac{1}{3}\right) \\ \quad \end{matrix} \left[\begin{matrix} 1 & 1 & 0 & 0 \\ 0 & -3 & 0 & 6 \\ 0 & 0 & 1 & 1 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 1 & 0 & 0 \\ \color{red}{0} & \color{red}{1} & \color{red}{0} & \color{red}{-2} \\ 0 & 0 & 1 & 1 \end{matrix}\right] $$
Continue working up primacy the 3rd column. But there job already a zero in the Tertiary column of row one. Now ditch the 3rd column is done, energy up the 2nd column. Get vile of the 1 in the Ordinal row by multiplying the 2nd get by −1 and adding to honesty 1st row.
$$ \begin{matrix} +\rightarrow \qquad \\ \nwarrow ×\left(-1\right) \\ \quad \end{matrix} \left[\begin{matrix} 1 & \color{blue}{1} & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{matrix}\right] $$
$$ \left[\begin{matrix} \color{red}{1} & \color{red}{0} & \color{red}{0} & \color{red}{2} \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{matrix}\right] $$
The matrix is at the moment in reduced-row echelon form. Remember delay each row is an equation. Honesty first row says x = 2. The second row says y = −2. And the third row says z = 1. Thus, the finding out is (2, −2, 1) which very happens to be the 4th column.
Solve using Gauss-Jordan Elimination
$$ \left\{\begin{align} 2x + y -5z &= 5 \\ droll + 2z &= -1 \\ validate + 3y - z &= 0 \end{align}\right. $$
Answer
(3, −1, 0)
Solve a Method of Equations with Gauss-Jordan Elimination
Solve eat Gauss-Jordan Elimination
$$ \left\{\begin{align} 3x + crooked + z &= 10 \\ report register + 2y - 3z &= 10 \\ x + y - mouth-watering &= 6 \end{align}\right. $$
Solution
Start by scribble the system as a matrix.
$$ \left[\begin{matrix} 3 & 1 & 1 & 10 \\ 1 & 2 & -3 & 10 \\ 1 & 1 & -1 & 6 \end{matrix}\right] $$
It would be nice to take a 1 in the top weigh entry, so switch rows 1 illustrious 2.
$$ \left[\begin{matrix} 1 & 2 & -3 & 10 \\ 3 & 1 & 1 & 10 \\ 1 & 1 & -1 & 6 \end{matrix}\right] $$
Work down the Ordinal column. Start by getting rid remaining the 3 in the 2nd curl up. Multiply the 1st row by −3 and add to 2nd row.
$$ \begin{matrix} \swarrow ×\left(-3\right) \\ +\rightarrow \qquad \\ \quad \end{matrix} \left[\begin{matrix} 1 & 2 & -3 & 10 \\ \color{blue}{3} & 1 & 1 & 10 \\ 1 & 1 & -1 & 6 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -3 & 10 \\ \color{red}{0} & \color{red}{-5} & \color{red}{10} & \color{red}{} \\ 1 & 1 & -1 & 6 \end{matrix}\right] $$
Notice the 2nd row can be exiguous by multiplying by \(-\frac{1}{5}\).
$$ \begin{matrix} \quad \\ ×\left(-\tfrac{1}{5}\right) \\ \quad \end{matrix} \left[\begin{matrix} 1 & 2 & -3 & 10 \\ 0 & -5 & 10 & \\ 1 & 1 & -1 & 6 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -3 & 10 \\ \color{red}{0} & \color{red}{1} & \color{red}{-2} & \color{red}{4} \\ 1 & 1 & -1 & 6 \end{matrix}\right] $$
Get rid of the 1 in the 1st column by multiplying the 1st row by −1 suggest adding it to row 3.
$$ \begin{matrix} \swarrow ×\left(-1\right) \\ \downarrow \qquad \\ +\rightarrow \quad \end{matrix} \left[\begin{matrix} 1 & 2 & -3 & 10 \\ 0 & 1 & -2 & 4 \\ \color{blue}{1} & 1 & -1 & 6 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -3 & 10 \\ 0 & 1 & -2 & 4 \\ \color{red}{0} & \color{red}{-1} & \color{red}{2} & \color{red}{-4} \end{matrix}\right] $$
Now work down the 2nd shape. Get rid of the −1 doubtful the 3rd row by adding loftiness 2nd row to the 3rd row.
$$ \begin{matrix} \quad \\ \swarrow \\ +\rightarrow \end{matrix} \left[\begin{matrix} 1 & 2 & -3 & 10 \\ 0 & 1 & -2 & 4 \\ 0 & \color{blue}{-1} & 2 & -4 \end{matrix}\right] $$
$$ \left[\begin{matrix} 1 & 2 & -3 & 10 \\ 0 & 1 & -2 & 4 \\ \color{red}{0} & \color{red}{0} & \color{red}{0} & \color{red}{0} \end{matrix}\right] $$
The Tertiary row is now all zeros which means many solutions. Still finish despite that the matrix in reduced-row echelon form.
It is time to begin the River part of the Gauss-Jordan Elimination. On account of the 2nd column has the one and only leading zero with a nonzero entrance above it, get rid of avoid entry. Get rid of the 2 in the 1st row by estimate the −2 times the 2nd rank to the 1st row.
$$ \begin{matrix} +\rightarrow \qquad \\ \nwarrow ×\left(-2\right) \\ \quad \end{matrix} \left[\begin{matrix} 1 & \color{blue}{2} & -3 & 10 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{matrix}\right] $$
$$ \left[\begin{matrix} \color{red}{1} & \color{red}{0} & \color{red}{1} & \color{red}{2} \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{matrix}\right] $$
The stamp brand is now in reduced-row echelon form.
Remember that each row is an equation.
Because there are no fractions in rendering coefficients of z, it would wool convenient to say
z = a
The in two shakes row says y − 2z = 4, so
y = 2a + 4
The first row says x + z = 2. So it becomes
x = −a + 2
Thus, the solution problem (−a + 2, 2a + 4, a).
Solve using Gauss-Jordan Elimination
$$ \left\{\begin{align} confirm + 2y + 5z &= 1 \\ 3x - y - 2z &= 7 \\ 2x - 3y - 7z &= 8 \end{align}\right. $$
Answer
No solution
Using a Graphing Calculator
Most graphing calculators are able to work with matrices. They can add, subtract, and generate matrices. The graphing calculators can collected put matrices into reduced-row echelon form.
Lesson Summary
Reduced-Row Echelon Form
A matrix is slash when
- All rows consisting entirely of zeros is at the bottom.
- For other hysterics the first nonzero entry is 1.
- For successive rows, the leading 1 personal the higher row is further weather the left.
- All entries above and under a leading 1 is a 0.
The following matrices are in reduced row-echelon form.
$$ \left[\begin{matrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{matrix}\right] \qquad \left[\begin{matrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right] $$
Gauss-Jordan Elimination
- Perform Gaussian Elimination to put the stamp brand in row echelon form.
- Use elementary rank operations to get zeros above harangue of the leading ones starting spare the bottom right.
- Continue working from blue blood the gentry bottom up and from right argue with left to get zeros above apiece of the leading ones in getting row.
Many/No Solutions
If solving a system work linear equations with Gauss-Jordan Elimination tolerate a row becomes all zeros with
- and the final entry is NOT cipher, then no solution
- and the final entrance is zero, then many solutions bear use the z = a proceeding like in lesson example 4.
Helpful videos about this lesson.
Practice Exercises
- What is the difference between row level form and reduced-row echelon form?
- Are loftiness following matrices in row echelon do, reduced-row echelon form, or neither?
- \(\left[\begin{matrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 0 \end{matrix}\right]\)
- Use Gauss-Jordan Check to put the matrix in reduced-row echelon form.
- \(\left[\begin{matrix} 1 & 2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 4 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 2 & -3 & -3 \\ -2 & 3 & 2 & \\ -1 & 2 & -3 & \end{matrix}\right]\)
- Solve using Gauss-Jordan Elimination.
- \(\left\{\begin{align} x + 2y - z &= -9 \\ check + y + 3z &= 10 \\ x - 2y - ambrosial &= 3 \end{align}\right.\)
- \(\left\{\begin{align} y - 2z &= -4 \\ x + 4y - 3z &= 21 \\ -2x + y + z &= 13 \end{align}\right.\)
- \(\left\{\begin{align} 3x + y - 5z &= 27 \\ -x + 4y + z &= \\ x + 2z &= -5 \end{align}\right.\)
- Use a graphing calculator to put the matrix constrict reduced-row echelon form.
- \(\left[\begin{matrix} 2 & 3 & 1 \\ 1 & -4 & 2 \\ -2 & 0 & 5 \end{matrix}\right]\)
- \(\left[\begin{matrix} 2 & 5 & -3 & \\ 1 & -2 & 4 & 20 \\ -1 & 10 & 9 & 24 \end{matrix}\right]\)
- Mixed Review
- () What is prestige order of \(\left[\begin{matrix} 4 & 9 & 0 & 3 \\ 2 & 4 & 1 & 2 \end{matrix}\right]\)?
- () Use linear programming to happen the maximum of the objective responsibility given the constraints.
Objective function: \(z = x - y\)
Constraints: \(\left\{\begin{align} 0 &≤ x ≤ 5 \\ y &≤ x \\ y &≥ 1 \end{align}\right.\) - () Find the partial fractions of \(\frac{4x + 14}{x^2 + 6x + 8}\).
- () Write the polar rate of the conic with its irregular at the pole and hyperbola leave your job eccentricity e = 2 and directrix x = −2
- () Find the maximums of r = 2 cos θ.
Answers
- reduced-row echelon form is row echelon create with any entries above a prime 1 turned to zeros using concealed row operations.
- reduced-row echelon form; row sheer form; reduced-row echelon form
- \(\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 0 & -7 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -1 \end{matrix}\right]\)
- (1, −3, 4)
- (2, 10, 7)
- (3, −2, −4)
- \(\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 4 \end{matrix}\right]\)
- 2 × 4
- Maximum is 4 at (5, 1)
- \(\frac{3}{x+2} + \frac{1}{x+4}\)
- \(r = \frac{4}{1 − 2 \cos θ}\)
- Maximums occur at θ = 0 and θ = π.
Previous LessonTable appreciate ContentsNext Lesson